Statistical Hypothesis Testing

Helena Chmura Kraemer Stanford University

Recapitulation

- Have a theory.
- Sampling, Design, measurement, treatment protocols.
- Need to set rule as to what evidence from the RCT would lead to recommendation for T over C.
 - Most common current method: Null Hypothesis Statistical Testing (NHST).
 - Greater Emphasis in Future (?): Effect sizes.

The Overuse, Misuse, Abuse of NHST

- Should NHST be "outlawed"?
- Signs of abuse:
 - Tables and text full of ***, NS, pvalues
 - "Statistical significance" interpreted as big, important, useful (when it may be trivial)
 - "Non statistical significance" interpreted as "proof" of the equivalence (when it indicates noor

Analogy: Trial by Jury vs. NHST

- Trial by Jury
 - You: The Prosecutor
 - Evaluation of Evidence: Judge/Jury
- NHST
 - You: The investigator
 - Evaluation of Evidence: Other scientists, reviewers, editors, readers, clinicians, policy makers, medical consumers or advocates.
 - Biostatisticians: The gadflies? The lawyers?

Exploratory Phase

- Gather evidence, testimony, etc. until have enough to bring charges, indict.
- Theory, Animal Studies, Clinical Observation, Pilot Studies, Phase I, Il studies, until have <u>rationale and</u> <u>justification</u> for your theory than T is better than (different from) C.

Hypothesis Specification

- Charges are few and specific. Some may be dropped during the trial, but none added during the trial in response to evidence.
- Hypotheses are few and specific.
 Some may be dropped during the RCT, but none added "post hoc".

Preparing for the Trial

- Assemble the judge, jury to hear the evidence and render the verdict. Instructions to the jury to prevent mistrial.
- Design the RCT to generate evidence needed to adequately and fairly test theory. Set the rule that will support your theory "a priori". Submit the proposal for review.
 - IRB

Objectivity

- The defendant is presumed innocent until proven beyond reasonable doubt to be guilty of stated charges.
- The "null hypothesis", i.e. the denial of your theory, is presumed true until you prove beyond reasonable doubt that it is false.
 - "Beyond reasonable doubt" means that the probability of claiming that your theory is true when it is not (null hypothesis true) is less than an a priori set significance level (usually 5% or 1%).

Interpretation of the Verdict-1

- "Guilty" means evidence was sufficient to prove guilt of stated charges beyond reasonable doubt.
 - May appeal the verdict.
- "Not guilty" means evidence was not sufficient to prove guilt of stated charges beyond reasonable doubt.
 - No double jeopardy

Interpretation of the Verdict-2

- "Statistically significant" means evidence was sufficient to prove beyond reasonable doubt (5% or 1%) that the null hypothesis is not true, and hence provides support for your theory.
 - Replication and independent confirmation <u>always</u> required. Meta Analysis?
 - Does not mean "large" or "important". It may not indicate clinical or policy significance.
- "Not statistically significant" means your evidence was not sufficient: inadequate power.
 - Learn from your mistakes!

Cavcats.

The Burden of Proof is on You

- Don't initiate trial until preliminary evidence is strong enough.
 - Present the evidence competently.
- Don't initiate RCT without sufficient rationale and justification
 - Valid sampling, design, analytic procedure
 - Reliable and valid outcome, and few of them.
 - High enough power.
 - Stick to your own protocol!
 - Don't over generalize or exaggerate your results.

Example-1

Theory: T>C

Treatment, design and measurement protocols

Sample N patients

Randomly assign proportion P to T. P'=1-P to C.

Measure response to treatment with bias controlled.

Analytic plan:

Compare T versus C, and if response to T is sufficiently better than that to C, reject the null hypothesis (here that T<C one-tailed)

Example-2: Specifically how?

Student's t-test: Compute t-statistic, and compute the p-value: a statistic estimating the probability of rejecting null hypothesis when the effect size is that observed. If p-value <5%, the reject null hypothesis (declare statistically significant at the 5% level).

Mann-Whitney Wilcoxon: Compute the test statistic and compute the p-value etc.

2X2 Chi Square test: Compute the success rate in T and compare with that in C. Compute the test statistic and compute the p-value, etc.

Correlation Test: Compute the correlation coefficient between outcome and exposure to

Example-3: What is N? P? Will I have enough power?

Effect Size

Null Hypothesis true

Null Hypothesis not true Not Clinically Clinically Significant Significant

Example-4: Where do mistakes happen with power?

- Critical effect size set at heart's desire rather than threshold of clinical significance.
- Simple miscalculation.
 - Proposing to do Chi-Square test, but computing power using t-test.
 - Making assumptions unlikely to be true.
 - Assuming normal distributions, equal variance when that is not true.
 - Assuming absence of site differences in a multisite study.

The Problem of Effect Size

- Common choices (Rules of Thumb):
 - T-test: Cohen's d, the standardized mean different between the treatment means. (Null: d=0; Small: .2; Medium: .5; Large: .8.)
 - Mann-Whitney-Wilcoxon: AUC=Prob(T>C)+.5Prob(T=C). (Null: 50%; Small: 56%; Medium: 64%; Large: 71%.)
 - 2X2 Chi-Square: Odds Ratio, Risk Ratio, Risk Difference.
 - AUC=.5(1+RD)
 - Correlation Coefficient: (Null: 0; Small: .1; Medium: .3; Large: .5.)
- To date, largely based on statistical, not clinical or policy considerations.

And when the RCT is done?

- Write up the results, and celebrate!
- Learn from your mistakes.
- Formulate new hypotheses for future testing
 - Moderators of treatment: Factors measured at baseline that identify on whom or under what conditions the treatment works better or worse.
 - Why important? Selection for treatment; Inclusion/exclusion criteria, stratification for future studies.
 - Mediators of treatment: Events or changes during treatment that may help explain how or why the treatment works.
 - Why important? Suggestions for improvement of treatment efficacy or effectiveness.

Conclusion

- If use NHST, always present effect sizes for any statistically significant result, and some measure of the accuracy of estimation.
- If don't use NHST, consider using effect sizes and some measure of the accuracy of estimation. Possibly Bayes' estimation?
- Statistical significance is necessary, but not sufficient! Ultimately the crucial issue is the benefit to the patients, i.e. clinical or policy significance.